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An approach based on Independent Component Analysis (ICA) has been applied on a combination of monthly

GRACE satellite solutions computed from official providers (CSR, JPL and GFZ), to separate useful geophysical

signals from important striping undulations. We pre-filtered the raw GRACE Level-2 solutions using Gaussian

filters of 300, 400, 500-km of radius to verify the non-Gaussianity condition which is necessary to apply the

ICA. This linear inverse approach ensures to separate components of the observed gravity field which are

statistically independent. Themost energetic component found by ICA correspondsmainly to the contribution

of continental water mass change. Series of ICA-estimated global maps of continental water storage have been

produced over 08/2002–07/2009. Our ICA estimates were compared with the solutions obtained using other

post-processing of GRACE Level-2 data, such as destriping and Gaussian filtering, at global and basin scales.

Besides, they have been validated with in situmeasurements in the Murray–Darling Basin. Our computed ICA

grids are consistent with the different approaches. Moreover, the ICA-derived time series of water masses

showed less north–south spurious gravity signals and improved filtering of unrealistic hydrological features at

the basin-scale compared with solutions obtained using other filtering methods.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Continental water storage is a key component of global hydrolog-

ical cycles and plays a major role in the Earth's climate system via

controls over water, energy and biogeochemical fluxes. In spite of its

importance, the total continental water storage is not well-known at

regional and global scales because of the lack of in situ observations

and systematic monitoring of the groundwaters (Alsdorf & Letten-

maier, 2003).

The Gravity Recovery and Climate Experiment (GRACE) mission

provides a global mapping of the time-variations of the gravity field at

an unprecedented resolution of ~400 km and a precision of ~1 cm in

terms of geoid height. Tiny variations of gravity are mainly due to

redistribution of mass inside the fluid envelops of the Earth (i.e.,

atmosphere, oceans and continental water storage) from monthly to

decade timescales (Tapley et al., 2004).

Pre-processing of GRACE data is made by several providers

(University of Texas, Centre for Space Research — CSR, Jet Propulsion

Laboratory — JPL, GeoForschungsZentrum — GFZ and Groupe de

Recherche en Géodésie Spatiale — GRGS) which produce residual

GRACE spherical harmonic solutions that mainly represent continen-

tal hydrology as they are corrected from known mass transfers using

ad hoc oceanic models (i.e., Toulouse Unstructured Grid Ocean model

2D— T-UGOm 2D) and atmospheric reanalyses from National Centers

for Environmental Prediction (NCEP) and European Centre for

Medium Weather Forecasting (ECMWF). Unfortunately these solu-

tions suffer from the presence of important north–south striping due

to orbit resonance in spherical harmonics determination and aliasing

of short-time phenomena which are geophysically unrealistic.

Since its launch in March 2002, the GRACE terrestrial water storage

anomalies have been increasingly used for large-scale hydrological

applications (see Ramillien et al., 2008; Schmidt et al., 2008 for reviews).

They demonstrated a great potential to monitor extreme hydrological

events (Andersen et al., 2005; Seitz et al., 2008; Chen et al., 2009), to
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estimate water storage variations in the soil (Frappart et al., 2008), the

aquifers (Rodell et al., 2007; Strassberg et al., 2007; Leblanc et al., 2009)

and the snowpack (Frappart et al., 2006, in press), and hydrological

fluxes, such as basin-scale evapotranspiration (Rodell et al., 2004a;

Ramillienet al., 2006a) and discharge (Syed et al., 2009).

Because of this problem of striping that limits geophysical

interpretation, different post-processing approaches for filtering

GRACE geoid solutions have been proposed to extract useful

geophysical signals (see Ramillien et al., 2008; Schmidt et al., 2008

for reviews). These include the classical isotropic Gaussian filter

(Jekeli, 1981), various optimal filtering decorrelation of GRACE errors

(Han et al., 2005; Seo &Wilson, 2005; Swenson &Wahr, 2006; Sasgen

et al., 2006; Kusche, 2007; Klees et al., 2008), as well as statistical

constraints on the time evolution of GRACE coefficients (Davis et al.,

2008) or from global hydrology models (Ramillien et al., 2005).

However, these filtering techniques remain imperfect as they require

input non-objective a priori information which are most of the time

simply tuned by hand (e.g. choosing the cutting wavelength while

using the Gaussian filtering) or based on other rules-of-thumb.

We propose another post-processing approach of the Level-2

GRACE solutions by considering completely objective constraints, so

that the gravity component of the observed signals is forced to be

uncorrelated numerically using an Independent Component Analysis

(ICA) technique. This approach does not require a priori information

except the assumption of statistical independence of the elementary

signals that compose the observations, i.e., geophysical and spurious

noise. The efficiency of ICA to separate gravity signals and noise from

combined GRACE solutions has previously been demonstrated on one

month of Level-2 solutions (Frappart et al., 2010). In this paper, we

use this new statistical linear method to derive complete time series

of continental water mass change.

The first part of this article presents the datasets used in this study:

the monthly GRACE solutions to be inverted by ICA and to be used for

comparisons, and the in situ data used for the validation of our

estimates over the Murray–Darling drainage basin (~1 million of

km²). This region has been selected for validation because of available

dense hydrological observations. The second part outlines the three

steps of the ICA methodology. Then the third and fourth parts present

results and comparisons with other post-processed GRACE solutions

at global and regional scales, and in situ measurements for the

Murray–Darling Basin respectively. Error balance of the ICA-based

solutions is also made by considering the effect of spectrum

truncation, leakage and formal uncertainties.

2. Datasets

2.1. The GRACE data

The GRACE mission, sponsored by National Aeronautics and Space

Administration (NASA) and Deutsches Zentrum für Luft- und

Raumfahrt (DLR), has been collecting data since mid-2002. Monthly

gravity models are determined from the analysis of GRACE orbit

perturbations in terms of Stokes spherical harmonic coefficients, i.e.,

geopotential or geoid heights. The geoid is an equipotential surface of

the gravity field that coincide with mean sea level. For the very first

time, monthly global maps of the gravity time-variations can be

derived from GRACE measurements, and hence, to estimate the

distribution of the change of mass in the Earth's system.

2.1.1. The Level-2 raw solutions

The Level-2 raw data consist of monthly estimates of geopotential

coefficients adjusted for each 30-day period from raw along-track

GRACE measurements by different research groups (i.e., CSR, GFZ and

JPL). These coefficients are developed up to a degree 60 (or spatial

resolution of 333 km) and corrected for oceanic and atmospheric

effects (Bettadpur, 2007) to obtain residual global grids of ocean and

land signals corrupted by a strong noise. These data are available at:

ftp://podaac.jpl.nasa.gov/grace/.

2.1.2. The destriped and smoothed solutions

The monthly raw solutions (RL04) from CSR, GFZ, and JPL were

destriped and smoothed by Chambers (2006) for hydrological

purposes. These three datasets are available for several averaging

radii (0, 300 and 500 km on the continents and 300, 500 and 750 km

on the oceans) at ftp://podaac.jpl.nasa.gov/tellus/grace/monthly.

In this study, we used the Level-2 RL04 raw data from CSR, GFZ and

JPL, that we filtered with a Gaussian filter for radii of 300, 400 and

500 km, and the destriped and smoothed solutions for the averaging

radii of 300 and 500 km over land.

2.2. The hydrological data for the Murray–Darling Basin

In the predominantly semi-arid Murray–Darling Basin, most of the

surface water is regulated using a network of reservoirs, lakes and

weirs (Kirby et al., 2006) and the surface water stored in these

systems represent most of the total surface water (SW) present across

the basin. A daily time series of the total surface water storage in the

network of reservoirs, lakes, weirs and in-channel storage was

obtained from the Murray–Darling Basin Commission and the state

governments from January 2000 to December 2008.

In the Murray–Darling Basin, we derived monthly soil moisture

(SM) storage values for the basin from January 2000 to December

2008 from the NOAH land surface model (Ek et al., 2003), with the

NOAH simulations being driven (parameterization and forcing) by the

Global Land Data Assimilation System (Rodell et al., 2004b). The

NOAH model simulates surface energy and water fluxes/budgets

(including soil moisture) in response to near-surface atmospheric

forcing and depending on surface conditions (e.g., vegetation state,

soil texture and slope) (Ek et al., 2003). The NOAH model outputs of

soil moisture estimates have a 1° spatial resolution and, using four soil

layers, are representative of the top 2 m of the soil.

In situ estimates of annual changes in the total groundwater

storage (GW) across the drainage basin were obtained from an

analysis of groundwater levels observed in government monitoring

bores from 2000 to 2008. Compared to earlier estimates by Leblanc

et al. (2009), the groundwater estimates presented in this paper

provide an update of the in situ water level and a refinement of the

distribution of the aquifers storage capacity.

Assuming that (1) the shallow aquifers across the Murray–Darling

drainage basin are hydraulically connected and that (2) at a large scale

the fractured aquifers can be assimilated to a porous media, changes

in groundwater storage across the area can be estimated from

observations of groundwater levels (e.g., Rodell et al., 2007; Strassberg

et al., 2007). Variations in groundwater storage (ΔSGW) were

estimated from in situ measurements as:

ΔSGW = SyΔH ð1Þ

where Sy is the aquifer specific yield (%) and H is the groundwater

level (L−1) observed in monitoring bores. Groundwater level data (H)

were sourced from State Government departments that are part of the

Murray-Darling Basin (QLD; Natural Resources and Mines; NSW;

Department of Water and Energy; VIC; Department of Sustainability

and Environment; and SA; Department of Water Land and Biodiver-

sity Conservation). Only government observation bores (production

bores excluded) with an average saturated zone b50 m from the

bottom of the screened interval were selected. Deeper bores were

excluded as they can reflect processes occurring on longer time scales

(Fetter, 2001). A total of 6183 representative bores for the unconfined

aquifers across theMurray–Darling Basin were selected on the basis of

construction and monitoring details obtained from the State depart-

ments. ~85% (5075) of the selected monitoring bores have a
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maximum annual standard deviation of the groundwater levels below

2 m for the study period (2000–2008) and were used to analyze the

annual changes in groundwater storage during the period 2000 to

2008. The remaining 15% of the observation bores, with the highest

annual standard deviation, were discarded as possibly under the

immediate influence of local pumping or irrigation. The potential

influence of irrigation on some of the groundwater data is limited

because during this period of drought, irrigation is substantially

reduced across the basin. Changes in groundwater levels across the

basin were estimated using an annual time step as most monitoring

bores have limited groundwater level measurements in any year (50%

of bores with 5 measures per year). The annual median of the

groundwater level was first calculated for each bore and change at a

bore was computed as the difference of annual median groundwater

level between two consecutive years. For each year, a spatial

interpolation of the groundwater level change was performed across

the basin using a kriging technique. Spatial averages of annual

groundwater level change were computed for each aquifer group.

The Murray–Darling drainage basin comprises several unconfined

aquifers that can be regrouped into 3 categories according to their

lithology: a clayey sand aquifer group (including the aquifers Narrabri

(part of), Cowra, Shepparton, and Murrumbidgee (part of)); a sandy

clay aquifer group (including the aquifersNarrabri (part of), Parilla, Far

west, and Calivil (part of)); and a fractured rock aquifer group

comprising metasediments, volcanics and weathered granite (includ-

ing the aquifers Murrumbidgee (part of), North central, North east,

Central west, Barwon, and Queensland boundary). The specific yield is

estimated to range from 5 to 10% for the clayey sand unconfined

aquifer group (Macumber, 1999; Cresswell et al., 2003; Hekmeijer &

Dawes, 2003a; CSIRO, 2008); from10 to 15% for the shallow sandy clay

unconfined aquifer group (Macumber, 1999; Urbano et al., 2004); and

from 1 to 10% for the fractured rock aquifer group (Cresswell et al.,

2003; Hekmeijer & Dawes, 2003b; Smitt et al., 2003; Petheram et al.,

2003). In situ estimates of changes in GW storage are calculated using

the spatially averaged change in annual groundwater level across each

type of unconfined aquifer group and the mean value of the specific

yield for that group using Eq. (1);while the range of possible values for

the specific yield was used to estimate the uncertainty.

Groundwater changes in the deep, confined aquifers (mostly GAB

and Renmark aquifers) are either due to: 1) a change in groundwater

recharge at the unconfined outcrop; 2) shallow pumping at the

unconfined outcrop or 3) deep pumping in confined areas for farming

(irrigation and cattle industry). GRACE TWS estimates accounts for all

possible sources of influence, while GW in situ estimates only include

those occurring across the outcrop. Total pumping from the deep,

confined aquifers was estimated to amount to−0.42 km3yr−1 in 2000

(Ife & Skelt, 2004), while groundwater pumping across the basin was

−1.6 km3 in 2002–2003 (Kirby et al., 2006). To allow direct comparison

betweenTWSand in situGWestimates, pumping fromthedeep aquifers

was added to the in situ GW time series assuming the −0.42 km3yr−1

pumping rate remained constant during the study period.

3. Methodology

3.1. ICA-based filter

ICA is a powerful method for separating a multivariate signal into

subcomponents assuming theirmutual statistical independence (Comon,

1994; De Lathauwer et al., 2000). It is commonly used for blind signal

separation and has various practical applications (Hyvärinen & Oja,

2000), including telecommunications (Ristaniemi & Joutsensalo, 1999;

Cristescu et al., 2000), medical signal processing (Vigário, 1997; van

Hateren & van der Schaaf, 1998), speech signal processing (Stone, 2004),

and electrical engineering (Gelle et al., 2001; Pöyhönen et al., 2003).

Assuming that an observation vector y collected from N sensors

is the combination of P (N≥P) independent sources represented by

the source vector x, the following linear statistical model can be

considered:

y = Mx ð2Þ

where M is the mixing matrix whose elements mij (1≤ i≤N, 1≤ j≤P)

indicate to what extent the jth source contribute to the ith

observation. The columns {mj} are the mixing vectors.

The goal of ICA is to estimate the mixing matrix M and/or the

corresponding realizations of the source vector x, only knowing the

realizations of the observation vector y, under the assumptions (De

Lathauwer et al., 2000):

1) the mixing vectors are linearly independent,

2) the sources are statistically independent.

The original sources x can be simply recovered by multiplying the

observed signals y with the inverse of the mixing matrix also known

as the “unmixing” matrix:

x = M
−1

y ð3Þ

To retrieve the original source signals, at least N observations are

necessary if N sources are present. ICA remains applicable for square

or over-determined problems. ICA proceeds by maximizing the

statistical independence of the estimated components. As a condition

of applicability of the method, non-Gaussianity of the input signals

has to be checked. The central limit theorem is then used for

measuring the statistical independence of the components. Classical

algorithms for ICA use centering and whitening based on eigenvalue

decomposition (EVD) and reduction of dimension as main processing

steps. Whitening ensures that the input observations are equally

treated before dimension reduction.

ICA consists of three numerical steps. The first step of ICA is to

centre the observed vector, i.e., to substract the mean vectorm=E{y}

to make y a zero mean variable. The second step consists in whitening

the vector y to remove any correlation between the components of

the observed vector. In other words, the components of the white

vector ỹ have to be uncorrelated and their variances equal to unity.

Letting C=E{yyt}be the correlationmatrix of the input data, we define

a linear transform B that verifies the two following conditions:

ỹ = By ð4Þ

and:

Efỹ ỹ tg = IP ð5Þ

where IP is identity matrix of dimension P×P.

This is easily accomplished by considering:

B = C
−1

2 ð6Þ

Thewhitening is obtained using an EVD of the covariancematrix C:

C = EDE
t ð7Þ

where E is the orthogonal matrix of the eigenvectors of C and D is the

diagonal matrix of its eigenvalues. D=diag(d1,…,dP) as a reduction of

the dimension of the data to the number of independent components

(IC) P is performed, discarding the too small eigenvalues.

For the third step, an orthogonal transformation of the whitened

signals is used to find the separated sources by rotation of the joint

density. The appropriate rotation is obtained by maximizing the non-
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normality of the marginal densities, since a linear mixture of in-

dependent random variables is necessarily more Gaussian than the

original components.

Many algorithms of different complexities have been developed

for ICA (Stone, 2004). The FastICA algorithm, a computationally highly

efficient method for performing the estimation of ICA (Hyvärinen &

Oja, 2000) has been considered to separate satellite gravity signals. It

uses a fixed-point iteration scheme that has been found to be 10 to

100 times faster than conventional gradient methods for ICA

(Hyvärinen, 1999).

We used the FastICA algorithm (available at http://www.cis.hut.fi/

projects/ica/fastica/) to unravel the IC of the monthly gravity field

anomaly in the Level-2 GRACE products.We previously demonstrated,

on a synthetic case, that land and ocean mass anomalies are

statistically independent from the north–south stripes using informa-

tion from land and ocean models and simulated noise (Frappart et al.,

2010). Considering that theGRACE Level-2products fromCSR, GFZ and

JPL are different observations of the same monthly gravity anomaly

and, that the land hydrology and the north–south stripes are the

independent sources, we applied this methodology to the complete

2002–2009 time series. The raw Level-2 GRACE solutions present

Gaussian histograms which prevent the successful application of the

ICA method. To ensure the non-Gaussianity of the observations, the

rawdata have been preprocessed usingGaussianfilterswith averaging

radii of 300, 400 and 500 km as in Frappart et al. (2010).

3.2. Time series of basin-scale total water storage average

For a given month t, the regional average of land water volume δV

(t) (or height δh(t)) over a given river basin of area A is simply

computed from the water height δhj, with j=1, 2, … (expressed in

terms of mm of equivalent water height) inside A, and the elementary

surface Re
2
δλδθ sinθj:

δV tð Þ = R
2
e ∑
j∈A

δhj θj;λj; t
! "

sin θjδλδθ ð8Þ

δh tð Þ = R2
e

A
∑
j∈A

δhj θj;λj; t
! "

sin θjδλδθ ð9Þ

where θj and λj are co-latitude and longitude of the jth point, δλ and δθ

are the grid steps in longitude and latitude respectively (generally

δλ=δθ). In practice, all points of A used in Eqs. (8) and (9) are

extracted for the eleven drainage basins masks at a 0.5° resolution

provided by Oki and Sud (1998), except for the Murray–Darling Basin

where we used basin limits from Leblanc et al. (2009).

3.3. Regional estimates of formal error

As ICA provides separated solutions which have Gaussian

distributions, the variance of the regional average for a given basin is:

σ
2
formal =

∑
L

k=1
σ2
k

L2
ð10Þ

where σformal is the regional formal error, σk is the formal error at a

grid point number k, and L is the number of points used in the regional

averaging.

If the points inside the considered basin are independent, this

relation is slightly simplified:

σformal =
σk
ffiffiffi

L
p ð11Þ

3.4. Frequency cut-off error estimates

Error in frequency cut-off represents the loss of energy in the short

spatial wavelength due to the low-pass harmonic decomposition of

the signals that is stopped at the maximum degree N1. For the GRACE

solution separated by ICA; N1=60, thus the spatial resolution is

limited and stopped at ~330 km by construction. This error is simply

evaluated by considering the difference of reconstructing the

remaining spectrum between two cutting harmonic degrees N1 and

N2, where N2NN1 and N2 should be large enough compared to N1 (e.g.,

N2=300 in study):

σtruncation = ∑
N2

n=0
ξn− ∑

N1

n=0
ξn = ∑

N2

n=N1

ξn ð12Þ

using the scalar product

ξn = ∑
n

m=0
CnmAnm + SnmBnmð Þ ð13Þ

where Anm and Bnm are the harmonic coefficients of the considered

geographical mask, and Cnm and Snm are the harmonic coefficients of

the water masses.

3.5. Leakage error estimates

We define «leakage» as the portion of signals from outside the

considered geographical region that pollutes the region's estimates.

By construction, this effect can be seen as the limitation of the geoid

signals degree in the spherical harmonics representation. For each

basin and at each period of time, leakage is simply computed as

the average of outside values by using an «inverse» mask, which is

0 and 1 in and out of the region respectively, developed in spherical

harmonics and then truncated at degree 60. This method of

computing leakage of continental water mass has been previously

proposed for the entire continent of Antarctica (Ramillien et al.,

2006b), which revealed that the seasonal amplitude of this type of

error can be quite important (e.g. up to 10% of the geophysical

signals). In case of no leakage, this average should be zero (at least, it

decreases with the maximum degree of decomposition). However,

the maximum leakage of continental hydrology remains in the order

of the signals magnitude itself.

4. Results and discussion

4.1. ICA-filtered land water solutions

The methodology presented in Frappart et al. (2010) has been

applied to the Level-2 RL04 raw monthly GRACE solutions from CSR,

GFZ and JPL, preprocessed using a Gaussian filter with a radius of 300,

400 and 500 km, over the period July 2002 to July 2009. The results of

this filtering method are presented in Fig. 1 for four different time

periods (March and September 2006, March 2007 and March 2008)

using the GFZ solutions Gaussian-filtered with a radius of 400 km.

Only the ICA-based GFZ solution is presented since, for a specific

radius, the ICA-based CSR, GFZ, and JPL solutions only differ from a

Fig. 1. GRACE water storage from GFZ filtered with a Gaussian filter of 400 km of radius. (Top) First ICA component corresponding to land hydrology and ocean mass. (Bottom) Sum

of the second and third components corresponding to the north–south stripes. (a) March 2006, (b) September 2006, (c) March 2007, and (d) March 2008. Units are millimeters

of EWT.
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Fig. 2. Time series of the kurtosis of the mass anomalies detected by GRACE after Gaussian filtering for radii of a) 300 km, b) 400 km, and c) 500 km.
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scaling factor for each specific component. The ICA-filtered CSR, GFZ,

and JPL solutions are obtained by multiplying the jth IC with the jth

mixing vector (Eq. 2). As the last twomodes correspond to the north–

south stripes, we present their sum in Fig. 1.

The first component is clearly ascribed to terrestrial water storage

with variations in the range of ±450 mm of Equivalent Water

Thickness (EWT) for an averaging radius of 400 km. The larger water

mass anomalies are observed in the tropical regions, i.e., the Amazon,

the Congo, the Ganges and the Mekong Basins, and at high latitudes

in the northern hemisphere. The components 2 and 3 correspond to

the north–south stripes due to resonances in the satellite's orbits.

They are smaller than the first component by a factor of 3 or 4 as

previously found (Frappart et al., 2010).

The FastICA algorithmwas unable to retrieve realistic patterns and/

or amplitudes of TWS-derived from GRACE data preprocessed using a

Gaussian filter with a radius 300 km for several months (02/2003, 06

to 11/2004, 02/2005, 07/2005, 01/2006, 01/2007, and 02/2009). Some

of these dates, such as the period between June and November 2004,

correspond to deep resonance between the satellites caused by an

almost exact repeat of the orbit, responsible for a significantly poorer

accuracy of the monthly solutions (Chambers, 2006). As ICA is based

on the assumption of independence of the sources, if the sources

Fig. 3. Correlation maps over the period 2003–2008 between the ICA-filtered TWS and the Gaussian-filtered TWS. Left column: ICA400–G400 (a: CSR, c: GFZ, and e: JPL). Right

column: ICA500–G500 (b: CSR, d: GFZ, and f: JPL).
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exhibit similar statistical distribution, the algorithm is unable to

separate them.

A classical measure of the peakiness of the probability distribution

is given by the kurtosis. The kurtosis Ky is dimensionless fourth

moment of a variable y and classically defined as:

Ky =
E y4
n o

E y2
& '2

ð14Þ

If the probability density function of y is purely Gaussian, its

kurtosis has the numerical value of 3. In the following, we will

consider the excess of kurtosis (Ky−3) and refer to the kurtosis as it is

commonly done. So a variable ywill be Gaussian if its kurtosis remains

close to 0.

The time series of the kurtosis of the sources separated using ICA

are presented in Fig. 2 for different radii of Gaussian filtering (300, 400

and 500 km) of GRACE mass anomalies. The kurtosis of the sum of the

2nd and 3rd ICs, corresponding to the north–south stripes, is most of

Fig. 4. RMS maps over the period 2003–2008 between the ICA-filtered TWS and the Gaussian-filtered TWS. Left column: ICA400–G400 (a: CSR, c: GFZ, and e: JPL). Right column:

ICA500–G500 (b: CSR, d: GFZ, and f: JPL).
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the time, close to 0; that is to say that the meridian oriented spurious

signals is almost Gaussian. Almost equal values of the kurtosis for the

1st IC and the sum of the 2nd and 3rd ICs can be observed for several

months. Most of the time, they correspond to time steps where the

algorithm is unable to retrieve realistic TWS (02/2003, 08/2004, 11/

2004, 02/2005, 01/2006, 01/2007, and 02/2009).

We also observed that the number of time steps with only one IC

(the outputs are identical to the inputs, i.e., no independent sources

are identified and hence no filtering was performed) increases with

the radius of the Gaussian filter (none at 300 km, 2 at 400 km, and 7 at

500 km).

In the following, as the ICA-derived TWS with a Gaussian

prefiltering of 300 km, exhibits an important gap of 6 months in

2004, we will only consider the solutions obtained after a pre-

processing with a Gaussian filter for radii of 400 and 500 km (ICA400

and ICA500).

Fig. 5. Correlation maps over the period 2003–2008 between the ICA-filtered TWS and the destriped and smoothed TWS. Left column: ICA400–DS300 (a: CSR, c: GFZ, and e: JPL).

Right column: ICA500–DS500 (b: CSR, d: GFZ, and f: JPL).
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4.2. Global scale comparisons

Global scale comparisons have been achieved with commonly-

used GRACE hydrology preprocessing: the Gaussian filter (Jekeli,

1981) and the destripingmethod (Swenson &Wahr, 2006) for several

smoothing radii.

4.2.1. ICA versus Gaussian-filtered solutions

Advantages of extracting continental hydrology using ICA after a

simple Gaussian filtering have to be demonstrated for the complete

period of availability of the GRACE Level-2 dataset, as it was for one

period of GRACE Level-2 data in Frappart et al. (2010). Numerical tests

of comparisons before and after ICA have been made to show full

Fig. 6. RMS maps over the period 2003–2008 between the ICA-filtered TWS and the destriped and smoothed TWS. Left column: ICA400–DS300 (a: CSR, c: GFZ, and e: JPL). Right

column: ICA500–DS500 (b: CSR, d: GFZ, and f: JPL).
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